

Dimension- less number	Definition	Expression	Experimental values	Numerical values
Rayleigh	Buoyancy vs diffusion	$R = \frac{g\alpha\Delta Td^3}{\kappa v}$	up to	up to
Thermal Ekman	thermal diff. vs Coriolis	$E_t = \frac{\kappa}{\Omega D^2}$	down to 1.6 10 ⁻⁵	down to 1.6 10 ⁻⁵
Elsasser	Lorents vs Coriolis	$\Lambda = \frac{\sigma B^2}{\rho \Omega}$	up to 6.2 10 ⁻³	up to 0.1
Prandtl	viscous diff. vs thermal diff.	$P = \frac{v}{\kappa}$	0.025	7.0 0.3 0.025
Magnetic Prandtl	viscous diff. vs	$P_m = \frac{v}{\lambda}$	1.5 10-6	1.5 10-6

1 – Scaling of the convective motions

<u>As Λ increases:</u>

u'_φ becomes higher than u'_s: motions prefer not to cross the magnetic field lines.
... as a consequence each vortex becomes more and more "beam-shaped".

• The motions reach larger radius areas, where the magnetic field is weaker. ... thus the radial size L of the convective zone grows.

