Convective flow velocity measurements in a rapidly rotating sphere

Julien Aubert, *Daniel Brito*, Henri-Claude Nataf and Philippe Cardin

Laboratoire de Géophysique Interne et Tectonophysique Observatoire de Grenoble, France.

PAMIR, 4th International Conference MHD at dawn of 3rd Millennium

> Presqu'île de Giens - France September 18-22, 2000

Oersted 2000

Dipolar magnetic field

Earth's magnetic field at the Core-Mantle Boundary

Oersted 2000, at the CMB

Velocity Field at the CMB

The Earth's Core

Structure and composition of the Earth's Core

Flow at the onset of convection in a rapidly rotating sphere

Our experimental approach of the dynamical flow of the Earth's Core

Vortex of Water, Gal- Thermal convection in
lium, SodiumGal- Thermal convection in
GalliumThermal convection in
Gallium

MEASUREMENTS OF V(t)

Doppler apparatus

Velocity measurements in vortices of water, gallium, sodium

Thermal convection in a rapidly rotating sphere: flow visualisation

 $\begin{array}{c} \textbf{Coriolis Force} \Longrightarrow \\ - \textbf{Geostrophic flow} \end{array}$

Velocity measurements in a rapidly rotating sphere of water: radial velocities

Velocity measurements in a rapidly rotating sphere of water : different dynamical regimes at fixed rotation rate

Evolution of time-depth radial patterns with Ra at $E = 9.7 \ 10^{-6}$

Velocity measurements in a rapidly rotating sphere of water : different regimes at fixed Ra/Ra_c

Comparison of profiles obtained in Water and liquid Gallium.

Non-dimensional numbers for the convection flow.

Number	Name	Meaning	Water	Gallium	Earth's core
$Ra = \frac{\alpha \Delta T g_D D^3}{\kappa \nu}$	Rayleigh number	buoyancy viscosity	$10^7 - 10^9$	$10^7 - 10^8$?
$E = \frac{\nu}{\Omega D^2}$	Ekman number	$\frac{VISCOSILY}{Coriolis}$	$10^{-5} - 10^{-6}$	$10^{-6} - 10^{-7}$	$10^{-15} - 10^{-13}$
$P = \frac{\nu}{\kappa}$	Prandtl number	$\frac{\text{viscous diffusivity}}{\text{thermal diffusivity}}$	7	0.025	0.1 - 10

Velocity fields are accessible in MHD experiments using the Doppler ultrasonic technique.

We have established power scaling laws for the explored parameter regime (Pr, E, Ra).

If the results are extrapolated to the core, they give structures which are too thin. Influence of the magnetic field...? FUTURE:

Magneto-convection in a rapidly rotating sphere of gallium.

Moderate R_m experiments in Grenoble with liquid sodium under rotation and strong imposed magnetic field in a spherical geometry.

Let u, δ, T be scales for equatorial velocity, cell size and temperature perturbation. From convective heat flow over a sphere we get

$$T = 4\pi \frac{Nu}{uP^2},$$

Inertial balance: we equate Vortex stretching, Inertia, and buoyancy.

$$u = \left[(4\pi Nu)^{2/5} \left(\frac{2}{L} \frac{dL}{dr}\right)^{-1/5} \right] \left(\frac{Ra}{P^2}\right)^{2/5} E^{1/5}$$
$$\delta = \left[(4\pi Nu)^{1/5} \left(\frac{2}{L} \frac{dL}{dr}\right)^{-3/5} \right] \left(\frac{Ra}{P^2}\right)^{1/5} E^{3/5}$$
$$T = \left[(4\pi Nu)^{3/5} \left(\frac{2}{L} \frac{dL}{dr}\right)^{1/5} \right] \left(RaP^3\right)^{-2/5} E^{-1/5}$$

Viscous balance: we equate Vortex stretching, viscosity, and buoyancy.

$$u = \left[(4\pi Nu)^{1/2} \left(\frac{2}{L} \frac{dL}{dr} \right)^{-1/3} \right] \left(\frac{Ra}{P^2} \right)^{1/2} E^{1/3}$$
$$\delta = \left[\left(\frac{2}{L} \frac{dL}{dr} \right)^{-1/3} \right] E^{1/3}$$
$$T = \left[(4\pi Nu)^{1/2} \left(\frac{2}{L} \frac{dL}{dr} \right)^{1/3} \right] \left(RaP^2 \right)^{-1/2} E^{-1/3}.$$

Vorticity $\boldsymbol{\omega}$ reduces to its z component $\boldsymbol{\omega}$, and the resulting equation writes:

$$\frac{\partial\omega}{\partial t} + \mathbf{u} \cdot \nabla\omega - \beta \mathbf{u} \cdot \mathbf{e}_r = \nabla^2 \omega + \frac{Ra}{r} \frac{\partial T}{\partial \theta},\tag{1}$$

with

$$\beta = \frac{2}{L} \frac{\mathrm{d}L}{\mathrm{d}r} E^{-1},$$

and

$$L = \sqrt{1 - \left(\frac{r}{r_e}\right)^2}.$$

L is half the height of a vertical fluid column between the upper and lower boundaries.

Time averaged zonal flow speed measured along radius

Radius-averaged zonal speed against Ra

 $E = 9.8 \ 10^{-6}$