1 LGIT, Observatoire de Grenoble, France





Cylindrical radius, *s* (mm)



Time (sec

- turbulent viscosity in convecting fluid,
- and local, turbulent flow fields
- turbulent processes in rotating fluids
- controversially, large effective viscosity values for planetary core fluids



viscosity to within 2%

## **Convective Spin-Up Results:**

25 *-U* mm/s

<sup>10</sup> time,  $t(s)^{20}$ 

*d* = 25 mm

*d* = 50 mm

20

t (s)<sup>15</sup>

- Upper Left: Doppler velocity vs. beam distance and time
- Lower Left: Spin-up response at fixed beam distances
- **Right**: Exponential spin-up time vs. cylindrical radius
- **Greenspan's theory explains** measurements *but* with an **EFFECTIVE VISCOSITY** ~40% greater than viscosity at average convecting fluid temperature



### **Effective Viscosity Inversions:**

- **Right**: Effective viscosity deduced from convective spin-up experiments vs. local Reynolds number, Re, which parameterizes convective turbulence in the bulk of the fluid
- Re from experiments of Aubert et al. (2001), made using same apparatus
- Effective viscosity increases by more than 50% over molecular viscosity values
- Quasilinear fit between effective viscosity and *Re*, in agreement with Kolmogorov's theory of turbulence



# **Implications for Planetary Cores:**

- Extrapolating effective viscosity results to Earth's core, where Re~10<sup>8</sup>, implies veffective~10<sup>6</sup> v~1 m<sup>2</sup>/s
- Suggests turbulent values of Ekman *E~10<sup>-9</sup>* and of magnetic Prandtl *Pm***~1** in planetary cores
- In geostrophic flows, the effective viscosity in the Ekman boundary layers increases with turbulence in the bulk of the fluid