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Experimental evidence of inertial waves in a precessing

spheroidal cavity

Jérôme Noir, Daniel Brito, Keith Aldridge 1 and Philippe Cardin
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Abstract. We have demonstrated experimentally the ex-
istence of inertial waves in a slowly precessing spheroid of
fluid. Although such oscillatory internal shear layers have
been predicted theoretically and numerically, previous pre-
cession experiments had shown no evidence of their presence.
Using an ultrasonic Doppler velocimetry technique, profiles
of radial velocity have been measured in our precession ex-
periment. Comparison of these profiles with their synthetic
counterparts obtained numerically, proves the presence of
the predicted internal shear layers. They are emitted from
the breakdown of the Ekman layer at the two critical lat-
itudes of the fluid (around 30◦ and −30◦) and propagate
through the entire volume on conical surfaces. The asymp-
totic laws for these oscillatory layers, confirmed experimen-
tally and numerically, lead us to predict an oscillatory flow
of 10−6 m/s along such characteristic cones in the Earth’s
fluid outer core.

Introduction

The Earth’s outer core is a conducting liquid with its
dynamics significantly determined by the fact that it is a
rapidly rotating fluid, contained in a quasi-spheroidal, rela-
tively rigid mantle. While modelling the real Earth’s core,
complete with its solid inner part, will introduce complexi-
ties into its dynamical response to external perturbations, it
is important to understand the core’s most basic hydrody-
namical behaviour first. The laboratory evidence of inertial
waves in a precessing spheroid reported here is just such a
fundamental property of a contained, rotating fluid.
A primary result in the theory of rotating, barotropic flu-

ids is the existence of characteristic surfaces (cones) along
which small disturbances may propagate [Greenspan, 1968].
Oscillatory shear layers will develop along conical directions
in a contained rotating fluid, when the boundary is per-
turbed. More specifically, critical latitudes exist on the
sphere (and more generally on a spheroid) where the bound-
ary layers thicken significantly [Stewartson and Roberts,
1963]. In the experiment described below, the boundary
of the container is slowly precessed as seen by an observer
rotating with the fluid. The critical latitudes attached to
the fluid then become the source of conical shear layers
which penetrate the fluid interior [Kerswell, 1995]. Follow-
ing Greenspan [1968], these oblique shear layers are identi-
fied as an inertial wave.
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While our technique of measurement of the fluid veloc-
ity (Doppler ultrasonic method) clearly shows the internal
shear layers in the precession experiments, observations of
reflected light in this experiment and earlier versions of it us-
ing both flakes [Malkus, 1968] and dyes [Vanyo et al., 1995;
Vanyo and Dunn, 2000], did not reveal them. Indeed, in
only two related experiments concerned mainly with inertial
modes [Greenspan, 1968; McEwan, 1970], were the charac-
teristic cones observed (for a review on inertial modes, see
[Aldridge, 1997])

The precession experiment

We use a spheroidal cavity whose dimensions are given
in Figure 1; its oblateness is η = (a − c)/a = 1/25. The
Doppler measurements were obtained with a rotation rate
of the container ωc = 212 ±0.02 rpm imposed by a brushless
motor. With water as the working fluid (kinematic viscosity,
ν ' 1.1 10−6 m2/s) and the above experimental parameters,
the Ekman number is E = ν/ωca

2 ' 3.17 10−6. The con-
tainer is put on a rotating table which imposes a retrograde
precession rate ~Ωp varying from 0.1 to 10 rpm while the axis
of rotation of the container itself ~ωc makes an angle α = 20

◦

with ~Ωp (see [Noir, 2000] for details).
In Noir [2000], flakes (Kalliroscope) have been used to

visualise the flow. For example in Figure 2, some parts of
the flow were observed using that technique: the illuminated
parts of the picture correspond to coherent orientation of the
flakes associated with an axisymmetric shear. We note the
central brightness around the fluid axis of rotation which is
tilted from the axis of rotation of the container ~ωc, as pre-
dicted by linear theory [Busse, 1968] and measured through
different techniques [Vanyo et al., 1995; Noir, 2000]. The
bright bands on both side of the photograph are associated
with geostrophic motions first measured in Malkus [1968].
They are explained by a nonlinear process in the singular-
ity of the boundary layer at critical latitudes. Here, as ex-
pected, we have no evidence of oblique shear layers with this
visualisation technique.
A Doppler velocimetry method was used to measure the

velocity field associated with the inertial wave. This method
is based on the shift in frequency of ultrasonic pulses re-
flected by moving particles (here, conifer pollen spores that
are neutrally buoyant) in the fluid. Calibration and valida-
tion of this Doppler method have been performed in Brito
et al. [2001] through quantitative tests. The ultrasonic
probe fixed in the precessing frame, points towards the cen-
ter of the spheroid as shown in Figure 1. This configuration
enables us to measure radial velocity along the ultrasonic
beam.
Such measurements for different angular velocities of the

precessing table are reported in Figure 3. Each experimen-

3785



3786 NOIR ET AL.: EXPERIMENTAL EVIDENCE OF INERTIAL WAVES

p
Ω

c

150 

Ultrasonic probe

WATER

Plexiglass

35

a = 125 

c = 120 

α = 20
0

ω

Figure 1. The spheroidal cavity is cut in a plexiglass cylinder
(shaded area). Dimensions are in mm. An ultrasonic probe of
diameter 8 mm is introduced without contact in the upper hole
(10 mm in diameter) of the spheroid.

tal curve (solid line) is the average of 1000 profiles of radial
velocity done every 25 ms. Note that the position of the
probe in the upper hole has been chosen to minimise the
measured velocity at the center of the spheroid for Ωp = −3
rpm and remained the same for the other precessing rates.
Note also that the spatial resolution is better than 3 mm in
radius, and the divergence of the beam is 5◦ corresponding
to a lateral resolution increasing from 5 mm to 25 mm along
the shooting direction. The combination of these three phe-
nomena produce the error bars shown in Figure 3.
The velocities measured in Figure 3 are stationary in

time. Clearly evident is a spatial oscillation along a diam-
eter of the spheroid, with velocities nearly antisymmetric
with respect to the center of the spheroid. Should we asso-
ciate these features with the predicted inertial wave?

Numerical model of precession

We used the numerical model developed in Noir et al.
[2001] to compute the expected flow in the laboratory ex-
periment. Briefly, this model solves the momentum equa-
tion for an incompressible fluid of viscosity ν enclosed in a
spherical container of radius R. The sphere is spinning with
a frequency ωc around ~kc , and precessing at Ωp around ~kp
. Units of length and time are chosen as R and ω−1c re-
spectively. We write the momentum equation in a reference
frame attached to the solid-body rotation ~ω × ~r of the fluid
precessing at Ωp. Including the centrifugal force in the re-
duced pressure ϕ, the momentum equation for ~u is written:

∂~u

∂t
+ 2(P ~kp + ~ω)× ~u + (P ~kp × ~ω)× ~r

+ (~u · ~∇)~u = −~∇ϕ + E~∇2~u ,

where P is the Poincaré number defined as Ωp/ωc. No-slip
and no-penetration boundary conditions are used at r=1.

Figure 4 shows the three components of velocity in the
plane (~ω, ~kc) in the frame attached to the solid-body rotation
of the fluid for E = 3.16 10−6 and P = −1.8 10−4. For this
low value of the Poincaré number, geostrophic motions are
very weak and cannot be seen in the figure.
In Noir et al. [2001], it is shown that the amplitude

of the inertial wave scales as εE1/5 where ε = |~ω − ~kc| is
the forcing associated with differential rotation between the
fluid and the boundary. In the range of parameters of our
experiment, it can also be shown that ε is proportional to
sin β where β is the angle between ~ω and ~kc [Busse, 1968].
For the Ekman number of the computation shown in Fig-

ure 4, the size (or wavelength) of the inertial wave which
scales as E1/5 [Kerswell, 1995] is large (≈ R/3) and asymp-
totic features, such as characteristic cones, are difficult to
appreciate. Lower values of the Ekman number clearly show
this asymptotic behavior (see [Noir et al., 2001]). Oscillat-
ing shear layers emerge around critical latitudes at θ = ±30◦

with respect to the axis of rotation of the fluid. We see the
singularity of the Ekman layer at that latitude in the uθ, uφ
velocity contours in Figure 4, which generates a radial flow
in and out from this region. The shear propagates inside the
fluid along characteristic conical surfaces, symmetric about
the axis of rotation of the fluid with a semi-angle of 30◦.
These inertial waves are time dependent with a pulsation ω
in the frame attached to the solid-body rotation of the fluid.
They are stationary in the precessing frame, in particular on
the axis of rotation of the spheroid ~kc where the ultrasonic
experimental probe is attached.

Comparison

The source of the inertial wave is a local phenomenon:
the ellipticity of the container is not crucial as long as the
oblateness η is small compared to the size of the eruption
of the boundary layer (E1/5). Since this condition is met

Figure 2. Photograph of flakes in the spheroidal cavity for
α = 20◦, ωc = 300 rpm and Ωp = −3 rpm. Bright bands show
the shear associated with both the axis of rotation of the fluid
and geostrophic motions.
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Figure 3. Measured profiles of radial velocity (solid lines) ob-
tained from Doppler ultrasonic velocimetry for α = 20◦, ωc = 212
rpm and three precessing rates Ωp. The vertical bars give the
standard deviation of velocity. Dashed lines are numerical ve-
locity profiles deduced from figure 4 with the best value of the
colatitude β fitting the data. In order to illustrate the sensitivity
of this method, extreme numerical profiles contained within error
bars (β = 5o,β = 10o) are shown for Ωp = −3 rpm.

in the present experiment, we can compare the numerical
calculations (from the spherical model) with the experimen-
tal data measured in the spheroidal container. For larger
ellipticity (> E1/5), spheroidal models should be used as in
Lorenzani and Tilgner [2001].
First, we consider only the inertial wave component part

of the flow in Figure 4 (φ wavenumber m=1). Second, let
us consider a colatitude angle β with respect to the axis
of rotation of the fluid ~ω (vertical axis in Figure 4): along
this angle, we can extract a profile of radial velocity. Note
that a change in β will change the shape of the profile.
Third, in order to obtain the amplitude of the synthetic
profile for a given colatitude β, we use the asymptotic scal-
ing sin βE1/5 as proposed in the previous section. We have
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Figure 4. The three spherical components ur , uθ , uφ of the precessing flow in a sphere in the meridional plane containing ~kc and
~ω. E = 3.16 10−6 and P = −1.8 10−4. Contour intervals du, maxima and minima are indicated on each figure. Solid (dashed) lines:
positive (negative) values. Dotted line: zero isocontour line.

therefore A(r)/A∗(r) = sin β/sin β∗ where A denotes the
amplitude of the synthetic inertial wave and the star stands
for the numerical calculation. The calculation in Figure 4
gives sin β∗ = 0.016. Note that we have neglected the Ek-
man number dependency in the relation given above as the
two Ekman numbers are equal. The last step is then to find
the colatitude β which best explains the experimental data
in shape and in amplitude using a least squares method, and
compare it with independent estimations of β.
As seen in Figure 3 where we have represented both the

experimental and numerical profiles, we find β = 3◦, 7.5◦, 17◦

for Ωp = −2, −3, −4 rpm respectively. We compare these
determinations of β both to their evaluations in the ex-
periments through visualization and pressure measurements
which give 7◦ ± 5◦, 11◦ ± 5◦ and 20◦ ± 5◦ respectively, and
to the asymptotic results [Busse, 1968] which give 5.6◦, 9.8◦

and 17◦ respectively.
Note that the asymmetry between the first and second

half of each profile in Figure 3 is explained by the divergence
of the ultrasonic beam mentioned earlier. The numerical
profiles reproduce this asymmetry when averaging over a
sampling volume that increases along the diameter.
The agreement between experimental and numerical pro-

files demonstrates unambiguously that the spheroidal pre-
cessing container induces oblique internal shear layers in the
fluid. Figure 3 also checks experimentally the asymptotic
scaling laws for the amplitude of the velocity εE1/5 and the
size E1/5 of this inertial wave. An experimental verification
of the Ekman number dependency of the scaling laws needs
experiments at different ωc, although it will be difficult to
check the 1/5 exponent with the decade in Ekman numbers
accessible experimentally here. Finally, this study shows
that it is legitimate to compare a spherical numerical cal-
culation with our spheroidal experimental work, regarding
local phenomena such as these oblique or geostrophic shear
layers (see [Noir et al., 2001]).

Discussion

Why do flakes not see inertial waves?

There is no evidence of conical features with the flakes
technique, even though we know that this technique is very
sensitive to velocity shear. The flakes need a transient time
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to align in the shear, which one can estimate as the inverse
of the shear rates. Using figure 3, the maximum shear rate
is (∆u/∆d)max ' (50 mm/s)/(30 mm) which gives a tran-
sient time equal to at least 0.6 s. Since the period of the
inertial wave is 0.28 s, it seems reasonable to conclude that
flakes have no time to line up in the internal shear layers.

Application to the Earth’s Core

Both the numerical studies and the present experimental
work enable us to propose the law 1.5 ε E1/5 R ωc (in
dimensional units) for the maximum amplitude of the radial
velocity of the inertial wave induced by the precession of
the outer boundary of a spheroid. Using ε = 1.7 10−5 and
E = 10−15, we find that the inertial wave in the outer core
associated with the precession of the Earth corresponds to
a diurnal oscillation of the fluid of amplitude 6 10−6 m/s
on a width of 20 km (e.g. a displacement of 0.2 m in 12
hours). This is smaller than 10−4 m/s which is a typical
fluid velocity at the top of the Earth’s Core deduced from
secular variation of the Earth’s magnetic field [Bloxham and
Jackson, 1991]. If we ignore both the action of the magnetic
field and possible destabilisation of this flow (turbulence,
viscous or elliptical instabilities, ...), these values could be
used for direct prediction of motions in the Earth’s core
excited by the luni-solar precession.
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